KU LEUVEN

The Energy Transition

— overall perspective —

William D'haeseleer KU Leuven / WEC Belgium

Ljubljana May 14, 2024

Driver of the Energy Transition

- Thé <u>objective</u> of the current Energy Transition should be: decarbonization by mid century
- Without too many other 'targets' / 'constraints', like:
 - x% efficiency improvement
 - y% RES share
 - o z% electrolyzers...
- But with essential condition:
 - o of guaranteed / assured energy provision (SoES)
 - o at affordable societal cost

How fast the Energy Transition?

A fundamental question:

"How fast should we move towards decarbonization?"

EU by 2050? China by 2060? India by 2070? RoW (a.o., Africa) by ???

- \circ Current annual EU CO₂ emission ~7 % of global emissions (2021)
- $_{\circ}$ Overall historic cumulative CO₂ emission EU ~ 17% (2022)
- We have a historic responsibility,
 - should set the example, and
 - help create the conditions

→ energy technology progress

KUL

ENERGY SECURITY

Reflects a nation's capacity to meet current and future energy demand reliably, withstand and bounce back swiftly from system shocks with minimal disruption to supplies.

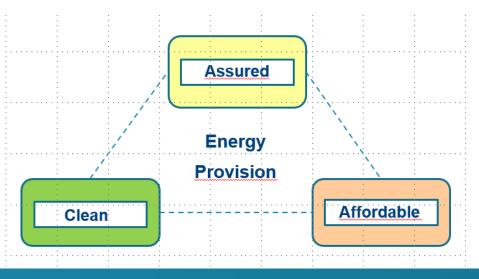
ENERGY EQUITY

Assesses a country's ability to provide universal access to affordable, fairly priced and abundant energy for domestic and commercial use.

ENVIRONMENTAL SUSTAINABILITY

Represents the transition of a country's energy system towards mitigating and avoiding potential environmental harm and climate change impacts.

The WEC's Energy Trilemma



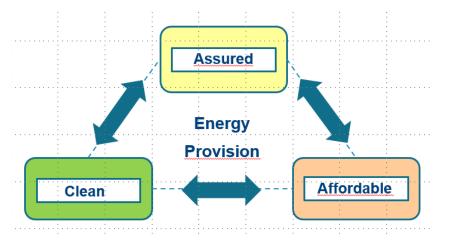
The Energy Transition

is actually a full system Transformation / a Revolution!

The current energy *'triangle'* is far from balanced: E-E-E (Energy – Environment – Economics)

The final aim by ~ 2050 should be a balanced energy triangle

KU LEUV


At present, the Energy Trilemma is not just an energy 'triangle'

Recall the meaning of a 'dilemma' ... similar for a 'trilemma'

The energy transition via the trilemma:

is a difficult exercise in managing the trade-offs;

in a moving system context / continued adaptation required

KU L

Throughout the period ~ 2010 - 2020

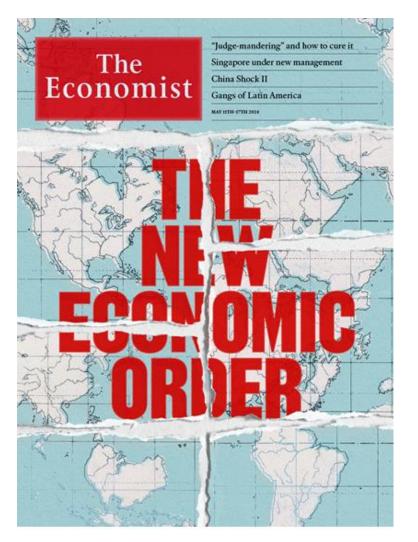
almost all attention went to decarbonization...

with energy security and affordability merely as 'footnotes'...

As of Feb 24, 2022

more attention to SoES and Affordability / Competitiveness

Now also realization of *vulnerability* for raw materials (rare-eath minerals), supply chains and manufacturability



Geopolitical context changing;

post-globalisation;

more fragmented world...

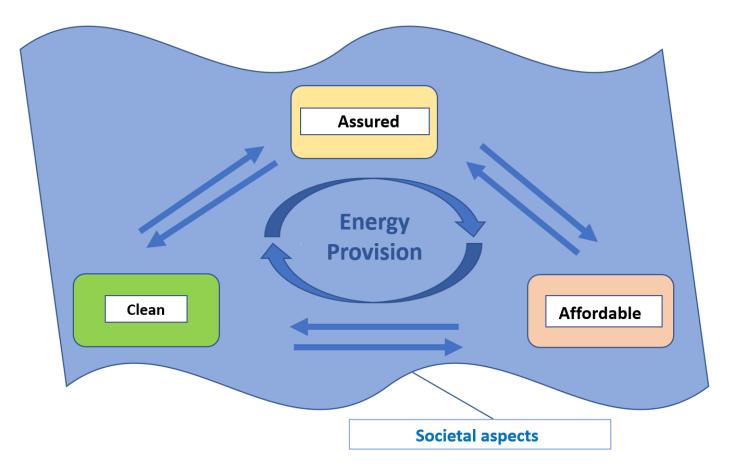
The Energy Trilemma – meaning apexes

SoES

- Accessibility first & foremost!
- Fundamental principle: diversity of supply / redundancy
 - Strategic SoS (primary energy / geopolitics)
 - Adequacy timely investments
 - Security / Reliability / Resilience (avoiding blackouts)
- Affordability
 - Reasonable prices for retail consumers
 - Acceptable prices for businesses (competitiveness)
 - Acceptable cost to society / but prices are signals of scarcity

KU LEl

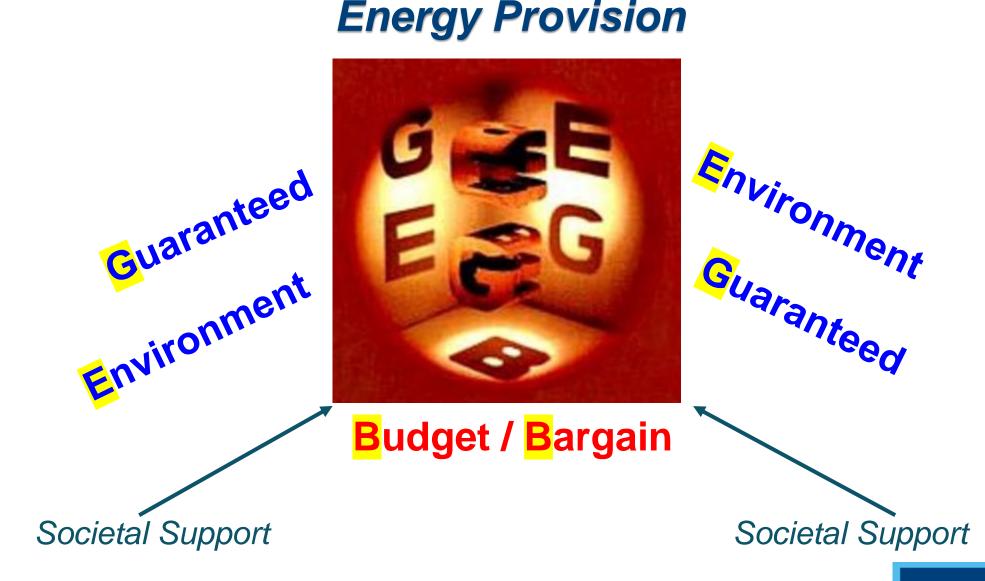
- Environmentally friendly
 - GHG emissions...
 - But also <u>safety</u> (avoiding accidents) and <u>health</u>



- Don't have illusions or be naive...
- The trajectory to mid century will be <u>difficult</u> (for many years...)
- Must be <u>target-oriented</u>, <u>effective and efficient</u>:
 - o clear objective,
 - o no technology preferences,
 - let *total social cost* (private costs + external costs) be *decisive*
- !! But do not forget societal support / public acceptance !!

KUL

The Energy Trilemma including society



- Don't have illusions or be naive...
- The trajectory to mid century will be <u>difficult</u>
- Must be <u>pragmatic;</u>
 - o clear <u>objectives</u>,
 - o no technology preferences,
 - let total social cost (private cost + external costs) be decisive
- !! But do not forget societal support / public acceptance !!
- Success means that trilemma becomes balanced 'triangle'

KU LEUVEN

The EU Targets

- Recall 20-20-20 targets... (nice sounding, effective but not efficient)
- Post COP-21 decision by 2030
 - - 40% GHG emissions w.r.t. 1990
 - 32% RES of final energy demand (with stat transfers)
 - - 32.5% energy efficient w.r.t. REF2007
- Fit for 55 (ff55) by 2030 (only 6 years from now)
 - - 55% GHG emissions w.r.t. 1990
 - 40% RES of final energy demand (with stat transfers)
 - - 36% energy efficient w.r.t. REF2007 (or -9% w.r.t. REF2020)

KU LEU

- REPowerEU (May 2022)
 - 42.5% RES of FED mandatory (45% RES aspiration)
 - 11.7% energy efficient w.r.t. REF2020

0

• Newly proposed target for 2040 by current Commission (Feb 2024)

Strasbourg, 6.2.2024 COM(2024) 63 final

KU LEUVEN

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

Securing our future

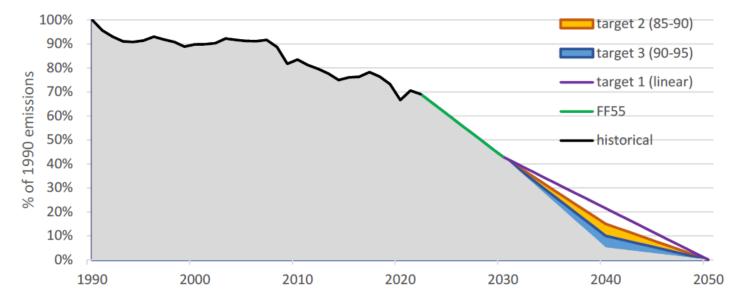
Europe's 2040 climate target and path to climate neutrality by 2050 building a sustainable, just and prosperous society

{SEC(2024) 64 final} - {SWD(2024) 63 final} - {SWD(2024) 64 final}

- Newly proposed target for 2040 by current Commission
- In summary:

"The Communication presents a 90% net GHG emissions reduction w.r.t. 1990 as the recommended target for 2040."

- Based on a 'thorough' impact assessment (exploring 3 scenarios):
 - Option 1, a reduction of up to 80% compared to 1990, consistent with a linear trajectory between 2030 and 2050 (⁹);
 - Option 2, a reduction of 85-90%, compatible with the level of net GHG reduction that would be reached if the current policy framework were extended to 2040 and


KUL

• Option 3, a reduction of 90-95%.

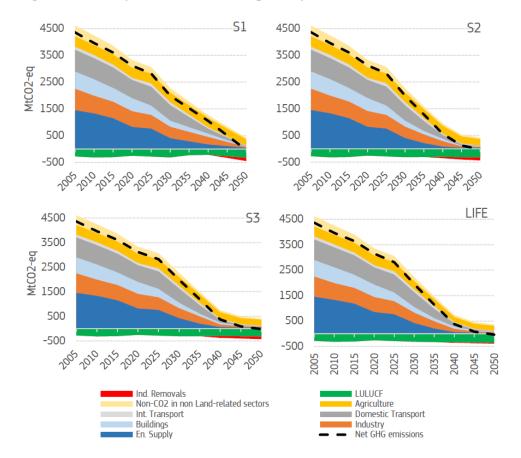
Newly proposed target for 2040 by current Commission

Figure 4. Profile of the net GHG emissions over 1990-2050

KU LEUVEN

Table 10: Summary of key energy indicators

	2030		2040		
		S1	S2	S3	S3**
	Policy releva	nt indicators	•	•	•
Energy-related CO2 reductions vs 2005	-58%	-83%	-90%	-94%	-103%
RES share in Gross FEC	42.4%	65%	72%	75%	89%
FEC reduction vs 2015 (55)	-19%	-34%	-34%	-36%	-40%
	Energy indica	tors - Supply			
Gross Available Energy (Mtoe)	1160	1022	1021.	1018	1032
- Fossil fuels	663	375	311	275	150
- of which for non-energy use	96	96	96	96	80
- of which captured	1.8	11.5	13.2	13.3	24
- Nuclear	139	129	129	129	142
- Renewables	328	482	544	613	691
Net imports (Mtoe)	572	347	298	267	153
Import dependency (%)	50%	34%	29%	26%	15%
Hydrogen production (Mtoe)(56)	9	60	76	100	185
e-Fuels production (Mtoe)	2	15	27	37	60
Ene	ergy indicators -	Power genera	tion	ł	1
Gross electricity generation (TWh)	3362	4563	4899	5212	6922
Net installed power capacity (GW)	1617	2181	2377	2525	3256
- Fossil fuels	238	172	164	156	142
- Nuclear	94	71	71	71	71
- Renewables	1285	1939	2142	2298	3027
Storage and flexibility options (GW)	172	213	254	275	238
	Final E	nergy			
Final Energy Consumption (Mtoe)	764	622	614	604	555
Electricity share in FEC	33%	48%	50%	51%	62%
e-Fuels share in FEC	0%	1%	3%	5%	7%


New nuclear commitments not yet taken into account (see Box p 44).

WORLD ENERGY BELGIË BELGIQUE BELGIQUE BELGIQUE

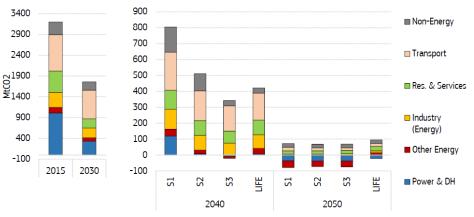
SWD(2024) 63 final – Part 1 p 42

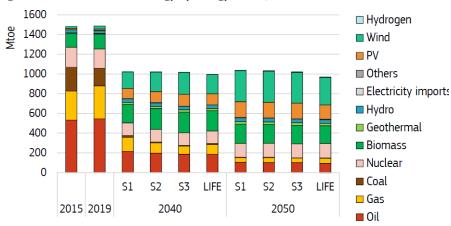
Figure 5: Economy-wide GHG emission pathways

WORLD ENERGY COUNCIL BELGIUM BELGIUM BELGIUM BELGIUM

SWD(2024) 63 final - Part 3 p 15

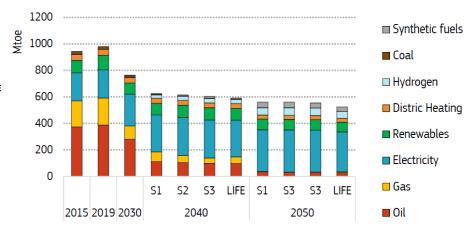
Figure 6: Energy and Industry net CO2 emissions




Figure 14: Gross Available Energy by energy vector, 2015-2050

BELGIUM

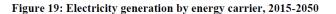
BELGIË


BELGIQUE BELGIEN

WORL

Note: Biomass and waste include non-renewable waste. Natural gas includes also manufactured gas.

Figure 32: Final Energy Consumption by fuel, 2015-2050



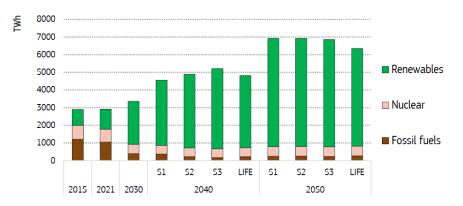
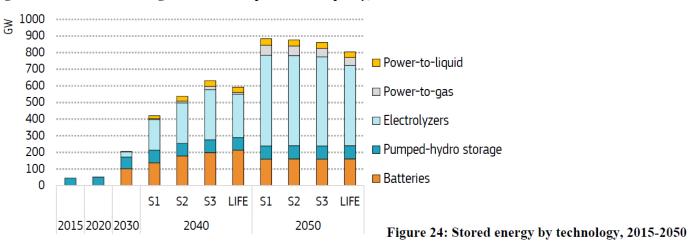
SWD(2024) 63 final - Part 3 p 16, 27, 42

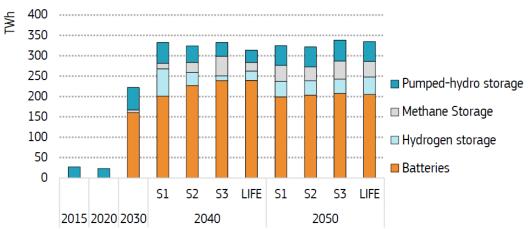
₹ ^{4.000} 3.500 3.000 Transport 2.500 Residential 2.000 1.500 Services and agriculture 1.000 500 Industry S1 S3 LIFE S2 S3 LIFE S1 S2 2015 2021 2030 2050 2040

Figure 18: Final electricity consumption by end-use sector

BELGIUM BELGIË

BELGIQUE BELGIEN


Figure 21: Net installed capacity by energy carrier, 2015-2050

KU LEUVEN

Figure 23: Net installed storage and new fuels production capacity, 2015-2050

SWD(2024) 63 final – Part 3 p 35, 36

KU LEUVEN

- Does one realize the <u>difficulties</u> with these 2040 targets?
- How about <u>public acceptability</u>?
- How about the overall system costs?

A target of 90% will require greater focus and effort to ensure a just transition than for less ambitious target options, as the transition is somewhat accelerated. While the difference across options in costs for households is limited (notably thanks to higher energy efficiency in Option 3 that limits energy purchases), the post-2030 policy framework should include adequate policy measures to ensure affordable energy prices and access to decarbonised solutions. Redistributive measures will be essential to address social impacts so that no one is left behind.

The resulting energy system costs (¹³) are also similar across options, ranging from 12.4% (Option 1), 12.7% (Option 2) to 12.9% of GDP (Option 3) in 2031-2040, a moderate increase compared to the 11.9% of GDP spent in 2011-2020, and then fall to about 11.3% for 2041-2050. The cost of fossil fuel imports decreases significantly under Option 3, to less than 1.4% of GDP by 2040 and less than 0.6% in the last decade (against 2.3% over 2010-2021 and 4.1% in 2022 during the recent energy crisis), saving about €2.8 trillion over 2031-2050.

KU LEU

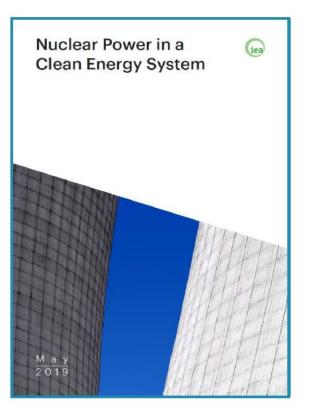
The EU Targets -2040 (?)

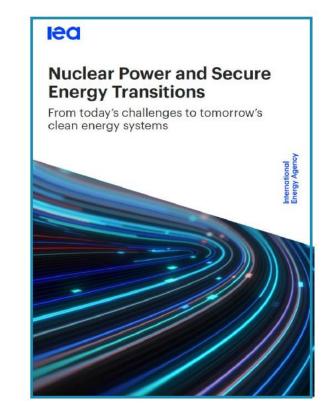
Actual targets

to be defined by the new Commission, Council & EU Parliament...

Stay tuned...

Possible role of nuclear in future energy systems?




- Currently (esp. after Feb 24, 2022) new 'renaissance' of nuclear in EU; several decisions taken by EU governments (and globally)
- Important distinction:
 - Long Term Operation (LTO) of existing safe plants
 - \circ New Build
 - Classical big reactors (EPR, AP1000, ...)
 - Small Modular Reactors (SMRs)
- Next 10-15 years, much LTO and some new build / pilot plants with ample government support...
- But long-term success? Proof of the pudding is in the eating...

Interesting references

And for general context, \rightarrow IEA WEOs...

- Important preliminaries:
 - New meanig of 'baseload' (actually 3 different concepts)
 - NPPs are able to participate in load following (perhaps after study)

KUL

LTO? A system has no a-priory technical lifetime;
Only <u>economic</u> lifetime or <u>political</u> lifetime

'Composition' & behavior of the electricity generation system will depend on:

- <u>Geography</u> (location e.g., near sea, elevation, ...) & <u>meteorology</u>
- o governmental policies: exogenously 'imposed' constraints on the system cfr DE
- o and imposed targets (e.g., share of renewables, green hydrogen, EVs, heat pumps, ...)
- o further <u>reductions cost</u> PV, wind & batteries expected

(even in fragmented non-global world with technological 'strategic autonomy)

expect ample VRE into the energy system / <u>huge installed VRE capacities /</u>

increased electrification

KU LEU

- behavior depends on <u>'flexibility' options</u> (with evolution over next 10...:30 years):
 - Flexible thermal generation (CCGT or OCGT with CCS, or biogas, ...)
 - Electrical transmission
 - Active demand response / participation; sector coupling
 - Energy storage (PHS, batteries, ...)

'Composition' & behavior of the electricity generation system:

- o ../..
- with <u>realistic 'obstacles'</u> (permitting, licensing, BANANA, ...) <u>LT VRE share ~ 70...90%</u>
- because <u>LT storage (seasonal / Dunkelflaute)</u>, most analyses 'find' <u>gap-filling technology</u>: CCGT+CCS, H₂, NPPs, geothermal
- future of <u>nuclear</u> will largely depend on <u>investment cost</u>
- realistic contribution <u>elec energy</u> share nuc ~ 10-20-30% <u>depending on the above</u>...

KU LEUVEN

o but, may need 'substantial' installed *capacity* nuclear power plants!

- Latest record for new build in EU and USA abysmal...
 - Finland, France, UK, USA
 - However UAE quite succesful
- How about SMRs?

SMRs are a 'business concept'; with various technologies

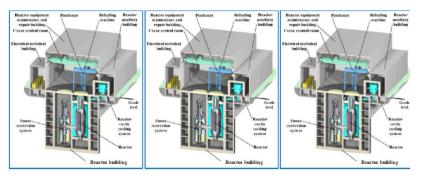
from evolutionary 'downscaled' Gen iii reactors (AP 300) to *Gen iv* or *v* advanced reactors with new fuel cycles.

Immediate Challenges for SMRs

- **1.** Economics / Competitiveness
 - $_{\circ}$ VRE-dominated electric system \rightarrow low Capacity Factor
 - $_{\circ}$ Small size → no scaling effect per MW_{installed}
 - \rightarrow need large number of units manufactured

KUI

 \rightarrow but now ~ 90 different 'designs'...


Immediate Challenges for SMRs

- 2. Get novel / revolutionary SMR concepts approved by *Nuclear Regulators*
 - Must prove safety & acceptable back-end fuel cycle
 - How to bring regulators up to speed on new concepts?
 - > Timely 'education' of, and knowledge transfer, to regulators
 - Pre-licensing trajectories recommended (learning by doing)
 - > Need new 'generation' of nuclear students & graduates (familiar with e.g. fast-spectrum reactors)

What is an SMR?

The 'modular' in SMRs stands for two meanings:

KU LEUVEN

1. Many small <u>identical reactor units</u>, <u>sited next to each other</u> as independent modules, making a power plant with bigger output.

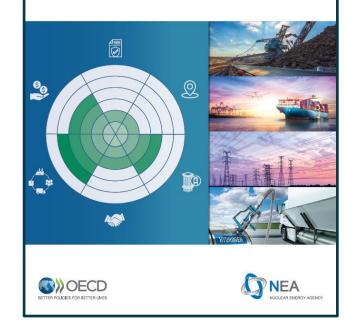
Many of these identical modules could be placed at different sites at different locations around the world. Extreme example: a reactor fitting in a container.

2. The major <u>parts</u> of a particular reactor of whatever size are <u>built in a workshop</u>, that will be brought to the site and assembled (klicked together) there.

Like IKEA or LEGO... / kind of 'prefab' construction

Much less onsite work!

What is an SMR?


Advances in Small Modular Reactor Technology Developments

A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2022 Edition

Feb 29 2024 The NEA Small Modular Reactor Dashboard: Second Edition

WORLD ENERGY COUNCIL BELGIUM BELGIUM BELGIUM BELGIUM BELGIUM

Future of SMRs?

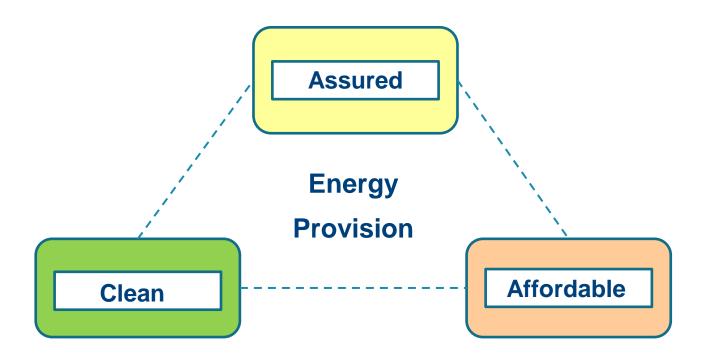
SMRs may provide a potentially interesting nuclear technology

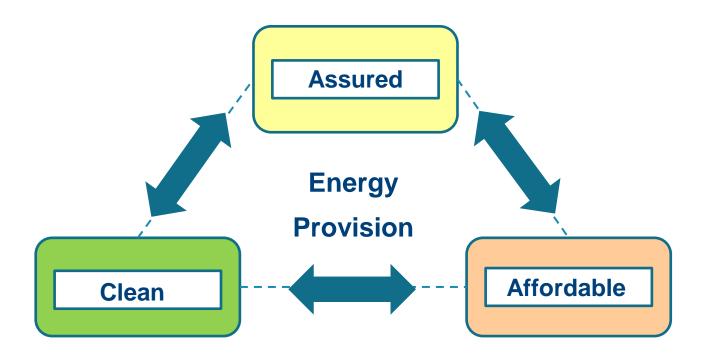
- A reasonable amount of R&D support is warranted
- Several different designs should be kept
- Give breathing space to small start-up companies
- When companies start using their own money, it looks interesting
- Important aspect will be <u>standardization of nuclear regulatory</u> aspects!
- A <u>stable policy & investment environment</u> is necessary
- It is up to the 'nuclear fission community' to prove that they can make it work!

Wrap up – Key Takeaways

- The Energy Transition is not to be underestimated!
- Do not forget the societal aspects (pace of transition?)
- Reflect upon taxes (polluter pays; ETS) versus subsidies (IRA)
- Much can be helped via expansion transmission network
- But permitting, permitting and permitting???
- Uncertainties:
 - Geopolitics / EU politics
 - Role of Natural Gas, CCUS, DAC, Hydrogen, Bioenergy
 - Which technology has priority on the grid?
- Remain optimistic, but realistic: be a 'possibilist';

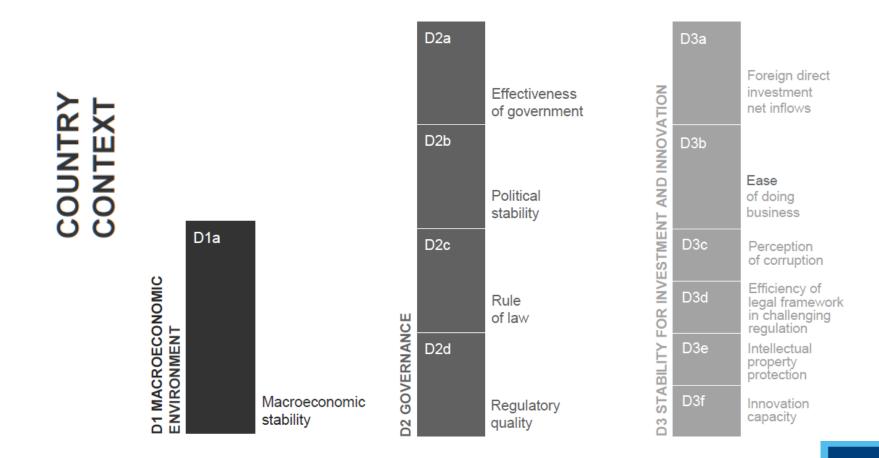
be transparent about the costs and difficulties.

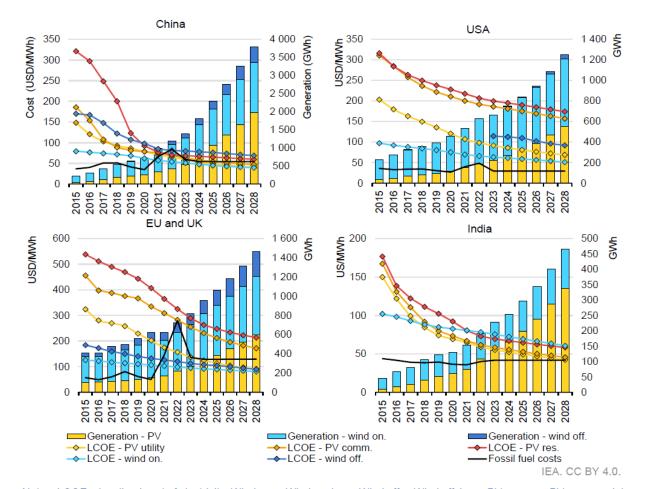

william.dhaeseleer@kuleuven.be



Backup slides

		A2 RESILIENCE OF ENERGY SYSTEMS	
	A1a	A2a	A2c
	Diversity of		
	primary energy supply	Diversity of electricity generation	
	A1b	A2b	
≻È			
	line ort	Enormy	System stability
ENE SEC	Import dependence	Energy storage	and recovery capacity

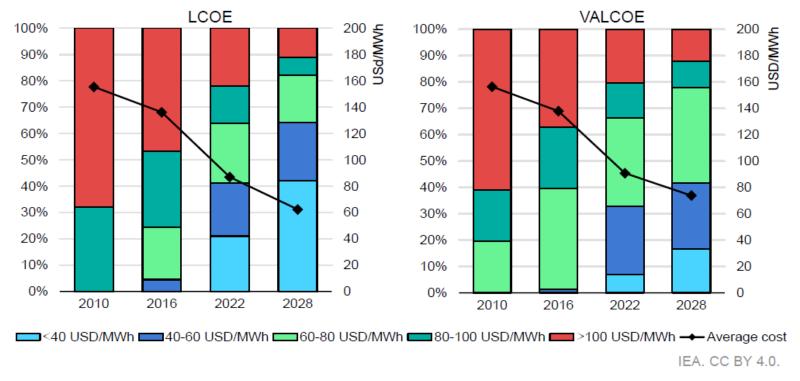

	B1 ENERGY ACCESS	B2 QUALITY ENERGY ACCESS		
	B1a	B2	B3a	B3c
	Access to electricity		Electricity prices	Natural gas prices
	B1b		B3b	B3d
ENERGY EQUITY	Access to clean cooking	Access to "modern" energy	Gasoline and diesel prices	Affordability of electricity for residents


C1 RESOURCE PRODUCTIVITY C2 DECARBONISATION

C1a5 C3a C3b1 C2b4 CO2 per capita C3c1 CH4 per capita CO2 intensity Final energy CO2 emissions C3d4 C3e4 intensity trend **ENVIRONMENTAL SUSTAINABILITY** C1b4 C2a5 PM2.5 **PM10** Efficiency of power Low carbon mean annual mean annual generation and T&D electricity generation exposure exposure

KU LEUV<u>EN</u>

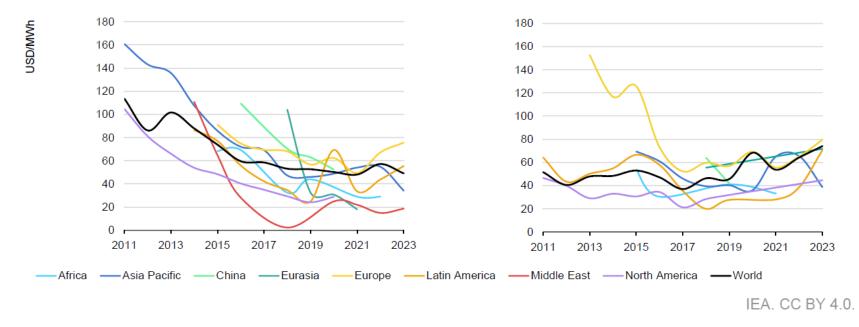
C3 EMISSIONS AND POLLUTION



Notes: LCOE = levelized cost of electricity. Wind on. = Wind onshore. Wind off. = Wind offshore. PV comm. = PV commercial. PV res. = PV residential.

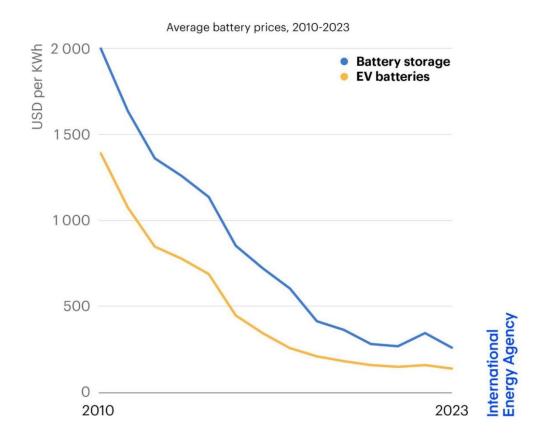
KU LEUVEN

IEA RES 2023, Jan 2024


Share of global PV and wind electricity production by generation costs, LCOE (left) and VALCOE (right) approach, 2010-2028

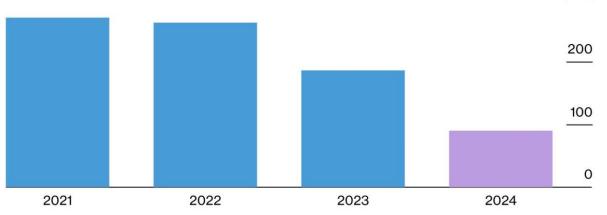
Notes: LCOE = levelized cost of electricity. VALCOE = value-adjusted LCOE.

IEA RES 2023, Jan 2024


Average auction prices by region for solar PV (left) and onshore wind (right)

Note: Asia Pacific excludes China.

IEA RES 2023, Jan 2024


In less than 15 years, battery costs have fallen by more than 90%, one of the fastest declines ever seen in clean energy technologies

Energy Storage System Prices Drop in China

Quoted China energy storage system prices more than halve in 2024

Yearly delivery prices 2024 April quote

\$300 per kilowatt-hour (real 2023)

Source: BloombergNEF, participants at the 12th Energy Storage International Conference and Expo (ESIE).

BloombergNEF